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SUMMARY 

Large-eddy simulation results are presented and discussed for turbulent flow and heat transfer in a plane 
channel with and without transverse square ribs on Gne of the walls. They were obtained with the 
finite-difference code Harwell-FLOW3D, Release 2, by using the PlSOC pressure-velocity coupling algo- 
rithm, central differencing in space, and Crank-Nicolson time stepping. A simple Smagorinsky model, with 
van Driest damping near the walls, was implemented to model subgrid scale effects. Periodic boundary 
conditions were imposed in the streamwise and spanwise directions. The Reynolds number based on 
hydraulic diameter (twice the channel height) ranged from loo00 to 40000. Results are compared with 
experimental data, k--E predictions, and previous large-eddy simulations. 
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1. INTRODUCTION 

Heat transfer and pressure drop performances are essential data in the design of heat exchangers 
and other engineering components with substantial economic connotations. However, the phys- 
ical equations which describe the fluid flow and convective heat transfer are complex partial 
differential equations (e.g. Navier-Stokes) and require the use of large digital computers. Despite 
their availability, simplifying assumptions are used whenever possible to reduce computing 
expenses. In this connection, we may distinguish three different classes of flow solutions, namely, 
laminar, time-averaged turbulent and direct simulations. 

For laminar flows, time-independence and geometrical symmetry are theoretically justifiable, 
and applications of computer programs, in general, agree very well with experiments. For 
turbulent flows, Reynolds-averaging of the equations on the basis of time gives laminar-like 
equations for which also time-independence and symmetry are invoked. In addition, though, 
a turbulence model is needed to give a turbulent viscosity or turbulent stresses. 

However, in fact, both laminar and turbulent flows are described by the same equations, and 
Spalding, for instance, has pointed out their essential identity.’ Of much more importance is the 
fact that turbulence is always four-dimensional (three spatial, one time, co-ordinate) in character. 
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This is reflected in the fact that it is very difficult to get consistently high-quality predictions using 
the time-averaged equations, no matter how complex the turbulence model is made. 

This turns our attention to direct simulation (DS) of the basic equations, which can therefore 
treat laminar or turbulent flows of any transient or geometrical character. The only, but very 
important, reservation to this is that higher turbulence covers such a range of scales that not all 
parts may be resolved. This alternative is called large-eddy simulation (LES) which requires 
a subgrid (SG) model for the unresolved scales.’ This technique has been applied with some 
success to a number of .basic geometries, including homogeneous turbulence, flow in plane 
channels and annuli, and Bknard convection. However, this has generally been done with 
specially written computer codes and with the use of numerical methods which are difficult to 
extend to complex geometries of engineering interest. 

On the other hand, computer codes have been developed in the last years which can handle 
complex geometries, allowing steady or transient simulations of recirculating flows. Some of them 
make use of finite difference methods in conjunction with body-fitted co-ordinates, making them 
powerful tools for the study of problems of direct engineering interest. The package Harwell- 
FLOW3D, Release 23 is an example of these codes. 

The main purpose of the present study was to demonstrate the feasibility of making a large- 
eddy simulation of both simple and complex flows with the standard numerics of a general- 
purpose code. Further, it was intended that the storage and CPU-time requirements would be 
moderate enough to make the application of LES to engineering problems an attractive possibil- 
ity, if not an immediately viable actuality. Thus, it was preferred to implement as simple a subgrid 
model as possible, with primary emphasis on stability and generality rather than on accuracy. 

2. MODEL AND METHODS 

Reviews of the LES method are given e.g. by Voke and Collins,’ Fe r~ ige r ,~  and Grotzbach.’ Here, 
we concentrate on the model and methods used for the present simulations in plane and 
rib-roughened channels. 

2.1. Equations and subgrid model 

The continuity, momentum (Navier-Stokes) and energy equations for incompressible fluid 
flow with heat transfer to be solved in LES can be written as follows (see References 6 and 7 for 
details): 

aui 
axi - = O ,  

!!?+au,uj= _ _ _  1 ap +- a [ (v + v , )  (aui - +- auj ) ]  , 
at axj  pax i  axi ax j  axi 

-+A aT au.T =-[(a a + ..)g]. at ax j  ax j  (3) 

In equations ( 1 x 3 )  ui, P and T are resolved (i.e. large-scale) fields; a gradient-diffusion (Bous- 
sinesq-like) hypothesis on subgrid stresses and heat fluxes is implied; and implicit summation over 
repeated indices is understood. The specific heat was assumed to be a constant in equation (3). Pis  
not the static pressure, p; rather, it is defined as 

(4) P = p + (213) p 6 
being the subgrid (unresolved) turbulent kinetic energy. Note that P = p on walls. 
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The Smagorinsky model* was used here for the subgrid kinematic viscosity v,: 

V,  = (c,DA)’ (2SijSij)’’2 ( 5 )  

In this equation, c, is a model constant of the order of 0.1, A is the average size of the generic 
computational cell (cubic root of its volume), D is a near-wall damping function expressed 
following van D r i e ~ t : ~  

D =  l-exp[-(y+/A+)], (6) 
where A +  is a constant (=25) and y +  is the distance from the nearest wall, expressed in wall units 
(see Section 2.2 for a discussion of scaling factors to be chosen). 

The choice of a value for the Smagorinsky constant, c,, is a crucial issue in LES. Although 
a value of 0.24.3 can be derived from theoretical  consideration^,^ in practical applications 
smaller values (close to 01)  have generally been found to yield the best results. This is partly due 
to the fact that, almost invariably, a certain amount of numerical diffusion adds itself to the 
‘physical’ subgrid viscosity v,. The choice of c, is discussed, among others, by Mason and 
Callen.” For the present simulations, the value 008 was chosen on the basis of former 
e~perience.~.’ Further remarks are in Section 4.2. 

The subgrid thermal diffusivity, as, was modelled simply by 

a, = vs/os, (7) 
os being a ‘subgrid Prandtl number’. Equation (7) is the subgrid analogue of aT = vT/oT, used in 
conventional turbulence modelling. However, while a value of -0.9 is generally accepted for the 
‘turbulent Prandtl number’ oT, a wide range of values have been used by various authors for os in 
LES heat transfer predictions, from” 025 to” 0.5 and’j 0.8. The smallest value (0.25) was found 
here to yield the best agreement with known temperature profiles. The rationale for a subgrid 
Prandtl number much smaller than unity is that pressure fluctuations may inhibit momentum 
transfer with respect to transfer of a scalar quantity at the subgrid ~ca1es . l~  

2.2. Computational domain and boundary conditions 

The computational domains for the plane-channel and the ribbed-channel cases are shown in 
Figure 1. Periodic boundary conditions were imposed along the streamwise direction (x) and the 
spanwise direction (z). The periodicity assumption requires that the extent of the computational 
domain along x and z must be larger than the characteristic lengths at which correlations between 
fluctuating quantities become negligible. For plane channels, experimental data by Comte- 
Belloti5 suggest these lengths to be -36 streamwise and - 1.66 spanwise, 6 being the channel 
half-height (=H/2, Figure 1). Thus, the values L = 66 and W = 46 were chosen. The same sizes 
were used for the ribbed channel, although no experimental data on correlation lengths were 
available for this geometry. The values chosen for the pitch-to-height ratio of the ribs, PJh,  and 
for the blockage ratio of the channel, h / H ,  were 7.2 and 1/4.8, respectively. The former value, as 
discussed in Section 3.2, is the one of greatest engineering interest, as it has consistently been 
found empirically to yield the greatest enhancement of heat transfer rates. The size of the 
computational box is such that it includes two complete pitches; this allows direct testing of flow 
periodicity and improves statistics on computed quantities. A reduced computational domain, 
including only one rib and thus having L = 36, was also used for grid and Reynolds number 
dependence assessment, see Section 4.3. 

The issue of wall boundary conditions for large-eddy simulations of turbulent flows is 
discussed, for example, by Piomelli et a1.16 In this context, it was decided early on in the work that 
it was substantially preferable to use no-slip, rather than synthetic, wall boundary conditions. 
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AY 

Figure 1. Schematic of the computational domains for: (a) the plane channel and (b) the ribbed channel 

These can be applied equally well to geometrically complex as to simple flows; however, it is 
necessary to resolve the viscous-conductive sublayer by at least one grid point, which restricts the 
simulations to relatively low Reynolds numbers. Work on more complex boundary conditions, 
suitable for high-Reynolds-number flows, is in progress and will be reported in future papers. 

The thermal boundary conditions were as follows: 

(a) The top wall was adiabatic for both geometries. 
(b) On the bottom wall, a constant heat flux q was imposed in the plane-channel case. For the 

ribbed channel, the same heat flux q was imposed on the horizontal wall between ribs, but 
a value 4/3 on each face of a rib. Thus, the total heat input into the channel was the same for 
the plane and the ribbed ducts. 

As streamwise periodicity is imposed, the computed pressure and temperature fields cannot be 
the 'true' ones, but periodic fields P*, P related to P and T by 

P*=P-(d@/dx)x, 

T* = T-(df/dx)x, 

where dfi/dx (< 0) and d f /dx  (> 0) are the mean streamwise pressure and temperature gradients. 
In order to compute P* and T* rather than P and T, the following source terms must be added to 
the right-hand side of equations (2) (written for the direction x) and (3), respectively: 

S" = I I/P, (10) 

S T  = - q/(2Sp C,)u/h. (1 1) 
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Equation (1 1) is derived on the basis of the assumption aa,/ax << u; see Reference 6. Here u is the 
local streamwise velocity and f the cross-section-averaged velocity, M/ WH. 

For both the plane and the ribbed channel cases, the pressure drop per unit length Idh/dxl is 
imposed, while the flow rate (and, thus the Reynolds number) follows as a result of the 
computation.* A mean wall shear stress can be defined as 

7 = 6 dhldx, (12) 
and the corresponding mean friction velocity computed: 

This can be used to define dimensionless quantities as 

in which T, is the wall temperature at the nearest heated-wall location and q the corresponding 
heat flux. 

Equation (14a), in particular, is used to scale y for use in the near-wall damping function (6). It 
should be observed that, in the ribbed channel, 7 is the mean shear stress on the smooth wall and 
not on the ribbed wall. Thus, scaling y by uT/v in equation (6) is not really appropriate, although it 
is the simplest choice; see Reference 7 for a discussion of the problem. 

2.3. Initial conditions 

Initial conditions were imposed as follows. 
First, the nominal mean (cross-section-averaged) velocity uo was determined so that the nominal 

Reynolds number, based on D, (the hydraulic diameter = 46) was Reo = 20 OOO for both geomet- 
ries. The required pressure gradient 1 djj/dx 1 was determined by 

Idfi/dxI = ( ~ G / D ~ ) P ( U O ) ~ / ~  (15) 
in which the friction coefficient Cf was expressed as follows. 

(a) For the plane (smooth) channel, by using the correlation proposed by Beavers and 
Sparrow '' 

Cf,sm = 0.127 Re-0'3  (16) 
valid for fully developed turbulent flow in flat ducts at moderate Reynolds numbers. 

(b) For the ribbed channel, by using the friction multiplier proposed by Rapier:'* 

Cf/Cf,sm= 1 + 115 h/De, (17) 
in which the hydraulic diameter, De, was expressed as twice the channel height H .  
According to equation (17) the required pressure drop was - 13 times higher in the ribbed 
duct (h/De = 1/9.6) than in the plane channel. 

* For this reason, we found it quite difficult to make predictions for a given Re. 
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Now, the mean velocity u (along x) was set equal to uo, and mean u and w were set equal to zero; 
random u, u and w fluctuations, having rms values equal to uT, were distributed normally in the 
channel in order to trigger turbulence. 

More sophisticated initial conditions are discussed in Reference 6; the exact form of them, 
however, has almost no influence on the flow development after some time. The initial temper- 
ature was set equal to zero throughout the channel. 

2.4. Grid, time step and statistics 

Typical computational grids used had 32 x 16 x 16 control volumes in the flow (along the x, 
y and z directions, respectively) for the plane channel, and 48 x 24 x 24 for the ribbed channel. 
Slices of these grids parallel to the x-y plane are shown in Figure 2. Grids were selectively refined 
near the walls, so that the viscous sublayer (y ’ < - 11) was resolved by at least one grid point in 
both geometries; they were uniformly spaced along z and, for the plane channel, also along x. The 
dependence of results on the number of grid points is discussed in Sections 4.2 and 4.3. For the 
plane-channel case, different sizes of the computational domain, and different grids and Reynolds 
numbers, were also tested in preliminary runs; results are reported in References 6 and 7. 

The time step was set at 1/100 of a LETOT (b/u,)  on the basis of former experience6 
Simulations were run for 20 to 40 LETOTs, i.e. 2000-4000 time steps. With the grids of Figure 2, 
the maximum ‘cell Reynolds number’ (uAx/v) was about lo3 and the maximum Courant number 
(uAt /Ax)  slightly less than unity. 

Mean and fluctuating components of the (resolved) flow and temperature fields were computed 
by processing instantaneous fields as follows (see also Nomenclature). For any scalar Q, (Q) 
denotes the space average over the plane parallel to walls (plane channel) or over the duct’s span 
(ribbed channel); (Q) denotes the time average of (Q), generally taken over the last 5 or 10 

Y 
b) 

X 

Figure 2. Computational grids in the x-y plane for: (a) the plane channel and (b) the ribbed channel 
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LETOTs, i.e. over 5W1000 time steps. Similarly, Q:ms = ((Q - (Q))’>’I2 denotes the root mean 
square of the fluctuating component of Q with respect to a plane or a span; and Qfms is the time 
average of this over 5 or 10 LETOTs. Note that (Q) and Q:ms are one-dimensional fields 
(functions of the cross-stream co-ordinate y only) in the plane-channel case, and two-dimensional 
fields (functions of x and y) for the ribbed channel. Mixed moments (Reynolds stresses and heat 
fluxes) and wall quantities can be defined similarly. All quantities are considered in their 
dimensionless form equations (14). 

2.5. Numerical methods and computational remarks 

The subgrid model described in Section 2.1 was implemented as discussed in Reference 19 in 
the computer code Harwell-FLOW3D, Release3 2.1. This is a finite difference code, using 
a centred (collocated) grid approach in conjunction with the Rhie-Chow algorithm2’ to prevent 
‘chequerboard’ oscillations. Body-fitted grids can be used, although all simulations described here 
employ Cartesian, non-uniform grids (see Section 2.4). Details of the implementation of the 
Rhie-Chow method are given in Reference 21. 

The code includes a number of options concerning differencing scheme, time stepping, pres- 
sure-velocity coupling, and linearized equation solvers. In the present simulations central 
differencing in space was used. Preliminary accuracy studies by Gavrilakis” with FLOW3D had 
shown that for LES applications only this differencing scheme was suitable, other schemes 
(including first- and second-order upwind, hybrid upwind and QUICK) being too dissipative, i.e. 
leading to a rapid decay of fluctuations. Similar conclusions were reached by the present authors 
in previous high-accuracy 2D simulations of high-Reynolds-number transient laminar 24 

With regard to the time-stepping algorithm, both the fully implicit backward and the 
Crank-Nicolson methods were tested. Preliminary runs revealed no significant difference in 
results between the two schemes. However, the Crank-Nicolson method was used in all final 
simulations as being, in principle, more accurate and less dissipative. 

As to the pressure-velocity coupling algorithm, the non-iterative scheme PIS025 was chosen, 
as preliminary tests showed that it was 3 4  times faster than the iterative scheme SIMPLEz6 in 
large-eddy simulation of turbulent flows (see Reference 6 for a discussion of the problem of 
defining accuracy in such computations). Both algorithms were used in their modified forms, 
PISOC and SIMPLEC, based on the work by VanDoormal and Raithby.” 

The linearized momentum and energy equations were solved by using Stone’s Strongly Implicit 
Procedure” in its three-dimensional form, while the pressure-correction equation was solved by 
using a conjugate-gradient method with incomplete Cholesky pre~ondi t ioning.~~ 

Simulations were run on the Harwell CRAY-2 and on the IBM 3090-180E or 3090-2005 
(without vector facility) of the University of Palermo. Computing times for a simulation lasting 
4000 time steps (40 LETOTs) were about 90 m for the plane channel (with a grid 32 x 24 x 24) and 
about 130 m for the ribbed channel (grid 48 x 24 x 24) on the CRAY-2, and 4-8 times higher on the 
IBM 3090-2005. Corresponding storage requirements were about 10 Mbytes and 14 Mbytes, 
respectively (i.e. about 100 real locations per grid point in the limit of large grids). 

3. REVIEW OF LITERATURE RESULTS 

3.1. Plane channel 

Experimental data for both mean and fluctuating velocities in simple channel flows have been 
obtainable for many years.’ 5 *  30 Recent and accurate measurements in fully developed plane- 
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channel flows include those of Kreplin and E~kelmann,~ '  who used oil in a duct having an aspect 
ratio of 3.59 at Red x 3400, and those of Hussain and Reynolds32 for Red x 10000. Experimental 
cross-stream profiles of mean and fluctuating velocities, once expressed in wall units as u + ,  
urmS etc. exhibit only a weak dependence on the Reynolds number. From correlation (16) and 
equations (12x14) it follows that the cross-section averaged velocity expressed in wall units, u + ,  
should increase as in full developed flow. However, the measured maximum (centre-line) 
mean velocity is about 18 both in31 (Red x 3400) and in32 (Red z 10000). Fluctuation data do not 
exhibit a clear trend with Re;'5*31*32 the streamwise fluctuation u A s  is the largest, with peaks 
of 2.3-2.8 near the walls, while peak values of u,,, and w,,, are lower and close to each other. 
Turbulence becomes more isotropic in the central region of the duct. 

There are no comparably accurate measurements of mean and fluctuating temperatures for 
thermally fully developed non-isothermal flow. For example, the holographic-interferometry 
results of L ~ c k e t t ~ ~  include real-time interferograms showing time-dependent thermal eddies at 
Reynolds numbers of 104-10s, but are for a thermal development length of only a few channel 
heights. In fully turbulent, fully developed flow the Nusselt number, defined as 

(in which T, is the wall temperature and f the cross-section-averaged fluid temperature) is 
expected to increase as as, for example, in circular ducts. From (12H14) it follows that the 
cross-section-averaged dimensionless temperature, T + ,  should increase only as Re0'05. 

Large-eddy simulations of isothermal plane-channel flows are relatively numerous. Early 
results are due to D e a r d ~ r f f . ~ ~  The most accurate simulations presented so far are those of Moin 
and Kim,3s who used a simplified form of Schumann's subgrid and spectral methods on 
very fine grids having up to 64 x 64 x 128 (x x y x z )  nodes. Results from different subgrid models 
were compared by H o r i ~ t i . ~ ~  The influence of the wall boundary conditions was investigated by 
Piomelli et ~ 1 . ' ~  and the influence of c, by Mason and Callen." The flow in the near-wall region 
was simulated directly by Azab and M c L a ~ g h l i n . ~ ~  

Flow with heat transfer in a plane channel with one wall heated was simulated by Hunter et 
al.," who also discussed the analogy between the time growth of the simulated thermal boundary 
layer and the space development of its physical counterpart in flows not yet fully developed. 
Preliminary results of large-eddy simulations in plane channels with heat transfer were also 
presented by the present authors in a previous paper.39 

3.2. Ribbed channels 

Turbulence promoters have been widely used in engineering to enhance heat transfer or 
mixing.40 Periodic square ribs on one wall of a plane duct can be considered as representative of 
a more general class of turbulence promoters; they are also a basic geometry for the study of 
recirculating flows with separation and reattachment, and thus have been extensively studied 
both e~per i rnenta l ly~l -~~ and numerically.566' 

On the basis of these studies, it has been known for some time that the best results in terms of 
heat transfer enhancement are obtained for values of the pitch-to height ratio, P l / h ,  of about 7. 
For smaller values a single recirculation bubble is formed in the cavity between consecutive ribs 
and heat transfer is impaired, while for larger values the effect of the ribs is excessively 'diluted'. 
Maxima of local heat transfer are obtained in the reattachment region on the bottom wall and on 
the leading edge of each rib, in correspondance with flow impingement. 
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For the pitch-to-height ratio of 7.2, according to Rapier" pressure drop data are correlated by 
equation (17), and heat transfer data by 

Nu = const x Re0" x (2.4 + 20h/D,). (19) 

From equations (17), (18) and (12H14) it follows that the channel-averaged dimensionless mean 
velocity, u + ,  and mean temperature, T', should both increase as Re0'lS.  

Most of the computational results presented for this geometry were based on the k-c turbu- 
lence model. LES results for the flow over periodic obstacles were presented by Fodemski et a1.,62 
who used a spectral code with co-ordinate transformation. The shape of the obstacles could be 
changed progressively from smooth to square; an unconditional instability occurred when the 
sharpness of the geometry exceeded a certain limit. LES results for square ribs at a Reynolds 
number of - lo4 were presented by Kobayashi et a1.13 They were obtained with a finite difference 
approach and a three-dimensional grid having about 9000 nodes; the computational domain 
included a single rib. The rib pitch-to-height ratio, Pl/h, was five and a single 'trapped' 
recirculation bubble was predicted. These results include heat transfer predictions and are 
compared with k--E results13 but not with experimental data. 

4. RESULTS AND DISCUSSION 

4.1. Turbulence energy andjlow rate 

The behaviour of the channel-averaged resolved turbulence energy is shown in Figure 3 for 
both geometries and for Reo = 20000, c, =0.08, grids 32 x 16 x 16 (smooth channel) or 
48 x 24 x 24 (ribbed channel). In the smooth channel case, k +  decays rapidly as the initial flow 
field (which does not satisfy continuity) is replaced by a mass-conserving flow, and then increases 

+ <* 

- plane channel 

-.** ribbed channel 

'1 I \  

Figure 3. Resolved turbulent kinetic energy, averaged over the whole channel and expressed in wall units, as a function of 
time in LETOTs for the plane and the ribbed channels at Reo = 20 OOO 
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very slowly for many LETOTs as a boundary layer grows, and vorticity is built up near the walls. 
It then increases steeply, overshoots and finally reaches a statistically stationary value of about 
2.5. For the ribbed channel, the low-turbulence phase is much shorter (-1 LETOT), no 
overshoot occurs, and an asymptotic behaviour is established after a few LETOTs. 

In both cases, the instantaneous Reynolds number increased slowly starting from the initial 
(nominal) value of 20000. The exact behaviour of both k +  and Re was found to be sensitive to the 
constant c, and to the grid used. For the ribbed channel, the final Re (LETOTs 3MO) was 26 600, 
i.e. the flow rate was overpredicted by 33 per cent with respect to correlations (1 1) and (13). The 
corresponding &Reynolds number was - 6650. Smaller overpredictions were obtained for the 
smooth-channel case; see the next section. 

4.2. Detailed results-smooth channel 

Grid dependence could be investigated only to a limited extent, due to CPU time and storage 
limitations. The numbers of streamwise, cross-stream and spanwise grid points, N , ,  N , ,  N , ,  were 
varied individually in the ranges 2448,  16-32 and 12-24, respectively, for Reo = 20000 and 
C ,  = 0.08. 

The influence of the streamwise resolution was found to be negligible in this range. The effect of 
varying N ,  and N ,  is summarized in Figures 4 and 5, respectively. Cross-stream profiles of the 
mean velocity (zi) (a), and of the streamwise fluctuation firrn, (b), are reported in wall units for 
N ,  = 16, 24 and 32 in Figure 4 (for fixed N ,  = 32, N ,  = 16) and for N ,  = 12, 16 and 24 in 
Figure 5 (for fixed N ,  = 32, N ,  = 16). 

It is clear from Figure 4(a) that increasing the cross-stream resolution from 16 to 24 grid points 
reduces the mean velocity significantly, while a further increase to 32 points produces only a small 
effect. Peak values of the streamwise fluctuating velocity, Figure 4(b), increase slightly with N ,  as 
a larger fraction of the total turbulent fluctuations is ‘captured’ at the resolved scale. Similar 
results are obtained for the other two fluctuating components. Temperature values are influenced 
by N ,  less than velocity profiles; T +  decreases by about 3 per cent for N ,  increasing from 16 to 32. 

From Figure 5 it can be seen that also an increase in N ,  from 12 to 16 reduces the mean velocity 
significantly; a further increase to 24 points has but a small effect. Fluctuation profiles are little 
affected by the number of spanwise grid points; for increasing N ,  peak values of u h s  increase 
slightly and move towards the walls, while its levels decrease in the bulk flow region. Temperature 
values increase slightly (- 5%) for N ,  increasing from 12 to 24. 

It has to be added that increasing the number of grid points in any direction resulted in 
a significant increase of the duration of the low-turbulence phase shown in Figure 3; for N ,  or 
N ,  equal to 24, k  ̂was still very low after 40 LETOTs, unless very small values of the Smagorinsky 
constant c, were used. Thus, in order to obtain self-sustaining turbulence it was necessary to start 
the simulations not from the initial conditions described in Section 2.3, but from the output of 
a preliminary 20-LETOT simulation at c, = 0. 

Reynolds number dependence was investigated only in the limited range Reo = 10000 to 
40000. At higher Reynolds numbers the near-wall resolution would be insufficient to have at least 
one grid point in the viscous sublayer, and ‘synthetic’ wall boundary conditions would be needed 
(several of these are currently being tested and results will be reported in future papers). On the 
other hand, at lower Reynolds numbers the flow would not be fully turbulent, and the use of the 
Smagorinsky subgrid model would not be appropriate. 

For the range examined, results are summarized in Figure 6: cross-stream profiles of the mean 
velocity (ti) and of the mean temperature ( r )  expressed in wall units, equations (14), are 
reported for Reo = 1, 2 and 4 x lo4 and for a 32 x 24 x 16 grid. Examination of these profiles 
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a) profile o f  <u> for Ny=16-24-32. Nx=32. Nz=16 
1 

.'I5 

I 
\ 
). 

.5 

.a 

0 

--- -- 

b) profile of u" rms for Ny=16-24-32, Nx=32,Nz=16 

Ny = 16 
Ny = 24 

- - - N Y  = 32 

-.- - 

Figure 4. Plane channel comparison of cross-stream profiles of <U) and Gtms (in wall units) for NY varying from 16 to 32 
and N, = 32, N, = 16 (Reo = 20000) 

reveals that the use of 'wall units' makes the mean flow and temperature fields little dependent on 
Re. Predicted values of 4' and T' vary approximately as Re"" and Re0'06; as discussed in 
Section 3.1, the trends suggested by experimental data are Re'"' and Re'''', respectively. 
A similar weak dependence on Re is obtained also for the resolved fluctuations. 
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a1 profile of <u> for Nz=12-16-24, Nx=32, N y = i 6  

b) profile o f  u" rms for Nz=12-16-24, Nx=32,Ny=16 

Figure 5. Plane channel: comparison of cross-stream profiles of (U) and ti:,,,$ (in wall units) for N z  varying from 12 to 24 
and N x  = 32, NY = 16 (Re' = 20000) 

Results of a 'reference' simulation at Re" = 20000 (Re," = 5000) using 32 x 24 x 24 grid points 
along x, y and z and c, = 0-08 are reported below. 

Cross-stream profiles of mean and rms fluctuating quantities are shown in Figures 7-12. All 
mean and rms values are taken over planes parallel to the walls, and further averaged in time over 
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a) profiles o f  <u> for Re=1-2-4~10**4 
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b) profiles o f  <T> for R e - l - 2 - 4 N 1 0 ~ 4  
i -  

.75- 

e r - . -  Ra = 10,000 
-5- - R = 20.000 --- Re = 40.000 

.a- 

Figure 6. Plane channel: comparison of cross-stream profiles of (ti) and ( T )  (in wall units) for different Reynolds 
numbers and a 32 x 24 x 16 grid 

LETOTs 30 to 40. The imposed pressure gradient was computed from equations (15) and (16). 
Results are compared with the available experimental data of Kreplin and Eckelmann3 
(Rea w 3400) and of Hussain and Reynolds” (Reax lOo00) .  Also reported are LES predictions by 
Moin and Kim35 (Red x lOOOO), and k--E results obtained with Harwell-FLOW3D for the same 
imposed pressure gradient as in LES. 
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Figure 7. Plane channel: comparison of computed and experimental cross-stream profiles of the mean velocity, ( 6 )  in 
wall units). Values of the &Reynolds number are indicated 
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Smooth channel: v '  rms (32%24%24 g r id ,  cs=0.013) 
a _ . - . _  

1? 
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- prerrnt r e w l t s  (LESI 

A Kreplin C Eckelmn 

$- -.- b i n  C Kim 0 

0 i 
Figure 9. Plane channel: comparison of computed and experimental cross-stream profiles of the cross-stream velocity 

fluctuation, 3;. (in wall units). Values of the &Reynolds number are indicated 

Smooth channel: n' rms (32%24%24 g r id ,  c,=O.O8) 
-.-.- .-,_._ 1 . .-. 

present results 0-Esl 
b i n  C K I D  US1 

A Kreplin C E c k e l m  

Figure 10. Plane channel: comparison of computed and experimental cross-stream profiles of the spanwise velocity 
fluctuation, G;,,,, (in wall units). Values of the &Reynolds number are indicated 
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Smooth channel: k (32~24~24 grid, c, =0.08) 
1 
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- Prsesnt rseulte (LES) 
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I 
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.25 
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Figure 1 1 .  Plane channel: comparison of computed and experimental cross-stream profiles of the turbulent kinetic 
energy, ( k )  (in wall units). Values of the &Reynolds number are indicated 

Smooth channel - cT> (32824N24 grid, c,=O.O8) 

Figure 12. Plane channel: cross-stream profiles of the mean temperature ( F )  (in wall units) for different values of the 
subgrid Prandtl number uB, and comparison with k-e predictions (Reo= 20000) 
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The mean velocity profile, Figure 7, is only slightly overpredicted by LES; the Reynolds 
number between LETOTs 30 and 40 was -20500. Note that, if the 32 x 16 x 16 results are 
plotted, Figure 4(a), a much larger overprediction is obtained, comparable to that obtained by 
D e a r d ~ r f f ~ ~  using a similar number of grid points (-6700). Thus, insufficient resolution of the 
computational domain appears to be the most likely cause for overpredictions of li and Re. In 
Reference 6, it was found that Re decreased for increasing values of c,; with the coarse 
32 x 16 x 16 grid, a value of 005 yielded a much worse overprediction, while a value of 0.10 gave 
a better agreement with the known results. However, using values of c, of 0.10 or larger led to 
unrealistic results as regards the fluctuation profiles and the predicted near-wall structures 
('streaks'). 

The fluctuation profiles predicted for c, = 0.08 with the 32 x 24 x 24 grid, Figures 8-10, are on 
the whole satisfactory. The only reservation applies to that of the cross-stream component, I$,,,,, 
which exhibits peaks too flat and far from the walls. This is probably due to  poor resolution of the 
near-wall region; there is only one grid point lying in the viscous sublayer y + < 11, against 3 4  
points in Moin and Kim's simulations. 

Levels of the total (resolved) kinetic energy of the turbulence, Figure 11, compare favourably 
with experimental data, while the k--E model appears to underpredict k. 

Temperature predictions are heavily affected by the value chosen for the subgrid Prandtl 
number us in equation (7). Profiles of ( T )  computed for 6, = 0.25, 0.5 and 1 are reported in 
Figure 12. As mentioned in Section 3.1, the literature is poor in experimental results on thermally 

fully deoeloped single-sided heat transfer in plane or rectangular channels, although this is a rather 
fundamental geometry. However, k--E predictions, based on wall functions and on Jayatilleke's 
 correlation^,^^ agree well with experimental data for similar geometries where these are available, 
and were assumed as reference results (broken line in Figure 12). It is evident that they are best 
approximated by the curve for 6, = 025; the same value was used by Hunter et al.' in previous 
LES predictions, and is lower than that (0.5) derived by Antonopoulos-Domis for isotropic 
turbulence.12 However, even with this small value of 6, gradients of ( T )  are overpredicted in the 
central region of the channel, where turbulent fluctuations are lowest. This could be an inherent 
shortcoming of the simple gradient-diffusion model used here for the subgrid heat flux.6 

One of the most mentioned aspects of turbulent channel flows in the context of LES are the 
coherent near-wall structures. Among them, the are streamwise-elongated regions of 
high- and low-speed fluid, alternating in the spanwise direction. Their spacing is experimentally 
found to be - 100 in wall units, while their length is between 500 and 1OOO. These structures were 
predicted with good accuracy (with some overprediction of their spanwise spacing) by Moin and 
Kim,35 who had four grid points within the viscous sublayer y ' c  11, and by Azab and 
McLaughlin3' by direct simulation of the near-wall region. 

Figure 13(akl3(c) shows contour plots of the instantaneous streamwise velocity u on a plane 
y + = 29, for three different values of the subgrid model constant c, in equation (6). The simula- 
tions are for a nominal Reynolds number, Re', of 32 000, a 32 x 16 x 16 grid, and a computational 
box having L = 56 and W =  36, i.e. smaller than that used for the results discussed above. The 
standard graphic post-processor of Harwell-FLOW3D, OUTPROC65 was used. Thick lines 
indicate contours of the midrange (not average) velocity; the regions inside them are high-velocity 
portions of fluid. 

For c, = 0.05, no dearly organized structure can be recognized. For c, = 0.10, on the other 
hand, streak length is so large that it exceeds the streamwise extent of the computational box 
(- 21 30 wall units). Most realistic results are obtained for the intermediate value c, = 0.08. The 
span of the computational box is about 1280 in wall units; the streak spacing is about 400, much 
larger than the experimental value. Probably, this overprediction is mostly due to insufficient 
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- b -  
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Figure 13. Plane channel: contour plots of instantaneous streamwise velocity, u, and temperature, T, on the plane y + = 29 
for different values of cs (Rea =32OOO): (a) u contours, cs=Q05; (b) u contours, c s = O I O  (c) u contours, c,=o.O8; (d) 

T contours, c, = 0.08 

resolution of the near-wall region; simulations repeated for a lower Reynolds number 
(Re = lOOOO), with two grid points in the viscous sublayer, yield a streak spacing of about 100-150 
wall units, only slightly overpredicted. However, part of the blame may be put on the subgrid 
model; H o r i ~ t i ~ ~  compared LES channel flow predictions using the Smagorinsky model and 
a subgrid-energy transport model, and found that only the former led to overpredicting the 
spanwise streak spacing. 

The dependence of the streak pattern on the constant c, has not, to the authors’ knowledge, 
been reported previously. It shows that a certain minimum value of the subgrid viscosity is 
required to sustain the spatial correlations giving rise to these and similar coherent structures; if 
c, is too large, however, excessive streamwise correlation ensues, giving rise to overprediction of 
the streak length. No effect of c, on the spanwise streak spacing was found here. 

Figure 13(d) shows the temperature contours corresponding to the streaks in Figure 13(c) for 
c, = 0.08. Not surprisingly, they exhibit the same general pattern as velocity contours, with 
high-temperature regions corresponding to low-speed fluid and vice versa. 

4.3. Detailed results-ribbed channel 

For the ribbed channel, partial results have been reported in References 66 and 67. The 
investigation of grid dependence was more difficult here than for the smooth channel, see remarks 
in Section 4.2. The 48 x 24 x 24 grid shown in Figure 2(b) is close to the upper limits allowed by 
CPU time and storage (the CRAY-2 at Harwell would have allowed, in principle, grids having up 



b) profile of u' rms (Nx=l6-24-32, Ny=Nz=24) sec.A 
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Figure 14. Ribbed channel: comparison of cross-stream profiles of (Is) and irm, (in wall units) at section A, Figure 2(b), 
for N x  varying from 16 to 32 and N ,  = N, = 24 (Reo= 20000, only one rib included in computational domain) 

to - lo6 volumes, but only a limited CPU-time budget was available on it. On the other hand, on 
the IBM 3090 of the University of Palermo Computing Centre the time allowance was larger but 
only 16 Mbytes of in-core storage were available). 

Due to these limitations, the sensitivity study was conducted by varying individually the 
number of streamwise, cross-stream and spanwise grid points, N,, N ,  and N,, in the range 16-32 
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a) profile of <u> (Ny=16-24-32, Nx=Nz=24), sec . A  

b) profile of  u" rms (Ny=f6-24-32, Nx=Nz=24) I sec . A  

Figure 15. Ribbed channel: comparison of cross-stream profiles of (U) and firrns (in wall units) at section A, Figure 2(b), 
for N Y  varying from 16 to 32 and N x  = N z  = 24 (Re' = 20 OOO, only one rib included in computational domain) 

for all directions, but for a 'reduced' computational domain including only one complete rib pitch. 
The number of spanwise points, N,, was found here to have little influence on the results in the 
range examined. For varying N ,  and N,, typical results are shown in Figures 14 and 15, 
respectively: cross stream profiles of (u) (a) and U:6, (b), expressed in wall units, are reported for 
the channel cross section midway between consecutive ribs (section A in Figure 2(b)). 
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Figures 14 and 15 suggest that 24 cross-stream and streamwise points (per pitch) are sufficient 
to give a basically grid-independent flow field, including the backflow (recirculation) region 
downstream of a rib. An insufficient streamwise resolution ( N ,  = 16) results in failure to predict 
backflow at section A, Figure 14(a), and in unrealistically high fluctuations near the smooth wall, 
Figure 14(b). The cross-stream resolution appears to be less critical, Figure 15. 

Comparison between simulations for a single rib and for two consecutive ribs did not evidence 
any significant difference in the results. However, final simulations were run for the two-rib 
domain shown in Figure l(b) in order to improve statistics and to conform to the correlation- 
length considerations discussed in Section 2.2. 

Reynolds number dependence was investigated in the restricted range Reo = 10 000 to 40 000 
for the same reasons discussed in Section 4.2. Results are summarized in Figure 16 for the section 
midway between consecutive ribs. As in Figure 6, cross-stream profiles are shown for ( u )  and 
( T ) ,  expressed in wall units. It is clear that, once made dimensionless, mean fields are little 
influenced by the Reynolds number. Predicted values of both t i+  and f' vary as Re0'" 
approximately. As discussed in Section 3.2, experimental correlations give for these quantities 
a dependence as 

For the ribbed channel, an additional parameter which influences the flow and thermal fields is 
the blockage ratio, h/H. Due to the necessity of having an adequate cross-stream resolution in the 
rib region, and to limitations on the overall grid size, values of h/H significantly less than the 
'reference' one (1/4.8) could not be investigated in the present study. The flow and thermal fields 
in the proximity of a rib, as well as the shear stress, pressure and temperature distributions on the 
bottom wall, should be little affected by h/H.* However, it is clear that comparison with 
experimental results obtained for different values of this ratio has, strictly speaking, only 
a qualitative nature. 

In the following, we concentrate on results for h/H = 1/4.8, Reo = 20000 and a 48*24*24 grid, 
covering two ribs. They were obtained for cs=0.08 and as=0.25. An overall view of the 
instantaneous (resolved) flow and temperature fields is given by Figures 17-20. 

Figure 17 shows the instantaneous velocity field on a plane (y' = 11) close to the ribbed wall. 
Vectors are (u, w); some contours of u are superimposed. Large eddies rotating in the x-z plane 
(i.e. strong three-dimensionality of the flow) and intense backflow regions near the leading sides of 
the ribs are the most apparent features. 

Figure 18 is an instantaneous map of the shear stress on the bottom wall; black cells are those 
in which z, < 0, i.e. forward (direct) flow occurs. Themain reattachment regions at - 2/3 of the 
distance between ribs appear 'patchy', which confirms the strong three-dimensionality of the flow. 
Almost continuous black stripes downstream of each rib indicate that stable counter-rotating 
corner eddies occur below the main recirculation regions. 

Figure 19 is a temperature map of the ribbed wall at the same instant, t=40 LETOTs. Here, 
black regions are those where the wall temperature is lower than the plane average, i.e. higher heat 
transfer occurs. These are concentrated both in the proximity of reattachment areas and 
immediately upstream of each rib. 

Figures 20(a) and 20(b) show instantaneous velocity and temperature fields at t = 40 LETOTs 
on an arbitrary plane z = constant. Only the region near one rib is shown. 

* A referee has helpfully pointed out that additiota1 References 68-70 suggest a somewhat stronger dependence of f+ on 
Re. From their data we estimate such to be T+-Re0'2-0 '3  . Similarly, where we conclude H / h  not to affect Nu, 
rather less evidence from the references infers the same influence on Nu of h/H,  namely 0.24.3. We are grateful to the 
referee for these comments, and leave the question open, making the point that we were not seeking to resolve every issue. 
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a) profile of <u> for Ae=1-2-4*10**4, sec . A  

b) profile of <T> for Re=1-2-4*10*#4, sec.A 

E * 

Figure 16. Ribbed channel comparison of cross-stream profiles of (U) and (7) (in wall units) at section A, Figure 2(b), 
for different Reynolds numbers and a 24 x 24 x 24 grid (only one rib included in the computational domain) 

The effect of spanwise averaging and time averaging on the predicted temperature field is 
shown in Figures 21(a)-21(c). The top graph (a) is a shade plot of the temperature field on the 
plane z = W/2 at the instant t = 40 LETOTs; some isotherms are depicted for purposes of clarity, 
and large irregular thermal structures are clearly visible. The central graph (b) is a plot of the 
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Figure 17. Ribbed channel (Reo=2OO0O): instantaneous velocity field on the plane y +  = 1 1  parallel to the ribbed wall 
(vectors u-w, contours of u) 

flow 

Figure 18. Ribbed channel (Re’ = 20000): instantaneous shear stress map on the ribbed wall (dark cells indicate 7x i 0, i.e. 
forward, or direct, flow) 

spanwise-averaged field at the same instant; large thermal eddies present in graph (a) have been 
smoothed away by spanwise averaging. Similar isotherm patterns are recorded by taking 
interferograms, which inevitably average the temperature field over the channel span.’I The 
problem for extracting information about the flow structure from similar interferograms, taken in 
real time, was discussed in a previous paper3’ for the case of plane-channel flow, and can be 
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Figure 19. Ribbed channel (Re’ = 20000): instantaneous temperature map on the ribbed wall (dark cells indicate 
T,  < T,, i.e. ~u > Nu) 
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Figure 20. Ribbed channel (Re’ = 20 OOO): instantaneous temperature and velocity fields near a rib on a plane normal to z 
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Figure 21. Ribbed channel (Re' = 20000): temperature distribution (the interval between consecutive isotherms is about 
3.5 wall units). (a) z = W/2, y=40 LETOTs (b) span-averaged, t=40 LETOTs (c) z= W/2,  time-averaged over 3 W  

LETOTs 

introduced for this more complex case; LES methods are a promising approach to the solution of 
such problems. Finally, graph (c) (bottom) is averaged in time over 3 M O  LETOTs. Smoothing 
effects are even more pronounced than in the span-averaged graph. The resulting time-averaged 
temperature field (or rather its span average) is what would be recorded by long-exposure 
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Ribbed channel: Bottom w a l l  shear s t ress 

A 

.... _.... ...... 

1 
8 9  

Figure 22. Ribbed channel (Re' = 20000): effect of span- and time averaging on the computed shear stress along the 
ribbed wall 

interferograms or similar techniques. Note that at the present Reynolds number of 20 OOO, and for 
the flow of air in a wind tunnel - 5 cm in height, one LETOT corresponds to - 5 x lo-' s, i.e. the 
averaging time of graph (c) would correspond to just 0.5 s of real time. 

The effect of the various averages on wall quantities can be appreciated, for example, by 
considering Figure 22; here the whole simulated streamwise length of the channel, including two 
rib pitches, is represented. The abscissa is the distance 5 travelled along the ribbed wall following 
the sides of the ribs; it is made dimensionless with respect to the rib height h. The quantities shown 
are T~ (local instantaneous resolved streamwise wall shear stress), as computed at z= W/2 and 
t = 40 LETOTs; (T,) (span-averaged instantaneous stress); and ( 7, ) (span- and time-averaged 
stress, the time average being made over 10 LETOTs). The local and instantaneous profile 
exhibits strong space fluctuations; moreover, the profiles relative to the two rib pitches differ 
markedly from each otber. Span averaging reduces the irregularities and makes the profiles over 
the two pitches closer to each other. Finally, span- and time averaging produces a smooth and 
periodic profile, repeating itself almost exactly over the two pitches. Similar remarks hold for the 
wall pressure and for the wall temperature or Nusselt number; see Reference 7. 

Figures 23-25 report wall quantities (p , ,  T~ and Nu). LES results were averaged at each 
streamwise location over the channel span, and further averaged in time over 3MO LETOTs. 
Moreover, the profiles relative to the two rib pitches included in the computational domain were 
averaged to improve the statistical quality of the results. The abscissa in Figures 23-25 is defined 
as in Figure 22. 

Figure 23 reports streamwise profiles of the wall pressure, made dimensionless with respect to 
4 p (u,,,)~ (in which umax is the maximum velocity in the channel). The mean streamwise pressure 
gradient was subtracted from results, so that only the periodic component of the pressure is 
actually shown. The pressure was arbitrarily set to zero in the position midway between two 
consecutive ribs. k-& predictions obtained using Harwell-FLOW3D, and experimental data of 
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Figure 23. Ribbed channel profiles of the static pressure along the ribbed wall. (-) Present predictions (LES, 
h / H =  1/44, Reo =200o0); (---) k-e predictions ( h / H =  1/4.8, Re=20000); ( A )  Experiments (Kacker 1971, h / H =  l/8, 

Re=50000 
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Figure 24. Ribbed channel: profiles of the shear stress in the direction along the ribbed wall. (-) Present predictions 
(LES, h/H = 1/4.8, Reo = 20000) (---) k-e predictions (h /H = 1/44, Re=20000) 



480 M. CIOFALO AND M. W. COLLINS 

I I I I 

1 . 5 .  

B o t t o m  wall 

0.5 * 

B o t t o m  wall 

0 I 
0 1 2 3 5 6 7 8 9 4 k  

Figure 25. Ribbed channel: profiles of the Nusselt number along the ribbed wall. (-) Present predictions (LES, 
h / H =  1/4.8, Reo = 20000); (---) k--E predictions (h /H= 1/44, Re=20000); (0) Experiments (LocketP h / H =  1/9.5, 

Re=30000); (A) Experiments (Watts and Williams5* h / H = 1 / 8 ,  Re=82000) 

Kacker4* obtained for Re = 50 000 in a channel having H/h = 8, are also reported in a similar 
form for comparison. Taking into account the above remarks on comparisons with different 
geometries and Reynolds numbers, the qualitative agreement with experimental data is encourag- 
ing, generally comparable with that obtained by the k--E model, and much better in the region of 
the leading side of the rib. 

Figure 24 shows similar profiles of the wall shear stress in the streamwise direction, 7,. k--E 
results are also reported for comparison. No accurate experimental data seem to have been 
reported in the literature for this quantity. Values are normalized to z, i.e. the mean, or nominal, 
wall shear stress, defined by equation (12). Values of z, differ broadly from k-& predictions; the 
LES wall shear stress profile indicates that reattachment occurs about four rib heights down- 
stream of each rib, and is followed by a short direct flow region and then by reseparation - 1.5 rib 
heights upstream of the consecutive rib. A counter-rotating corner eddy is also clearly indicated 
by negative values of 7, downstream of a rib. These results, especially as regards the reattachment 
length, are in agreement with experimental findings for comparable pitch-to-height and blockage 
ratios. Drain and Martin” reported a reattachment length of 4.3 h for Pl/h=7.2, h/H= 1/5 
(practically coincident with the values used in the simulation). k--E computations underpredict 
severely this important parameter, giving about 3h in the present case. 

Figure 25 shows span- and time-averaged profiles of the Nusselt number, defined by equation 
(18). Here, we concentrate on the qualitative behaviour of N u  along the ribbed wall; thus, profiles 
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Table I. Comparison of mean Nusselt number (scaled) 

LES k--E Watts and Williamss2 Lockett3 

hlH 114.8 1/4.8 1 /8 
Re 26600 21000 82 000 
N u  (scaled) 154 150 140 

119.5 
30 OOO 

142 

are normalized to the corresponding averaged value, Nu, to facilitate comparison with 

(a) k--E results, obtained with Harwell-FLOW3D for the same pressure drop and channel 

(b) experimental results of Watts and Williams,52 obtained by the copper-foil technique in 

(c) experimental results of L ~ c k e t t , ~ ~  obtained by holographic interferometry in the City 

LES predictions present many features that agree with experimental data, and differ from k--E 
results. The overall streamwise profile of Nu, with an absolute sharp maximum shortly upstream 
of each rib and a secondary flat maximum at -2/3 of the distance between ribs (i.e. in the 
reattachment region) is correctly reproduced. Note also the relative minimum shortly down- 
stream of the rib, probably in correspondence with backflow separation (edge of a counter- 
rotating eddy). This graph should be compared with the instantaneous temperature map in 
Figure 19. These features are totally missing in the k--E predicted profile, which appears practically 
flat over the whole interrib gap. 

As experimental data were obtained for different ratios of rib height to duct height (h/H) and 
for different Reynolds numbers, the levels and the average values of the Nusselt number cannot be 
compared directly with LES predictions on a quantitative basis. However, some comparison can 
be drawn if values of N u  are scaled to the present h/H (1/4.8) and Re (26600) by using Rapier's 
correlation (19). k--E results for Nu can be scaled by using the same law; note that k--E simulations 
(for the same pressure drop as in LES) gave a Reynolds number of -21 000, in good agreement 
with correlations (15H17). Results are summarized in Table I. It shows that, within the limits of 
validity of equation (19), LES predicts a value of Nu comparable with both k--E and experimental 
results. Cross-stream profiles of mean velocity and temperature, and of fluctuating velocity 
components, are reported in Figures 26 and 27 for the two streamwise positions A and 
B indicated in Figure 2(b); they are in dimensionless form, equation (14), and are compared with 
kL-E predictions using Harwell-FLOW3D for the same pressure drop. 

On profiles of ( u ) ,  Figure 26, the most relevant disagreement is in the consistently higher value 
of bulk velocity, and in the backflow region predicted by LES, but not by the k--E model, midway 
between ribs (section A). Profiles of ( T )  agree fairly well on section B but LES predictions are 
lower (i.e. heat transfer rates are higher) at section A. Levels of k,  Figure 27, agree on the whole 
with k--E predictions; the most relevant difference is in the sharp peak predicted by LES just over 
the rib top, Figure 27(b), and mainly associated with a peak in u b s .  

Cross-stream profiles of the mean streamwise velocity and of the streamwise fluctuation, 
computed by LES for h/H=1/4.8 and Reo=40000, are reported in Figure 28 for the two 
streamwise locations A and B. They are compared with experimental results of Bates et aL4* and 
of Drain and Martin,50 obtained for h/H = 1/5 and Reynolds numbers of 50000 and 64000, 

geometry; 

a channel having h/H= 1/8 at Re=82000; 

University wind tunnel (having h/H = 1/95) at Re = 30 000. 
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I I 
Figure 26. Ribbed channel: cross-stream profiles of mean I( and T at the two sections A and B, see Figure 2(b) 

respectively. For the mean velocity, also k--E predictions using the TUFC code are reported from 
Reference 50. Profiles are normalized to the mean velocity uB over the rib top, or to its square. 

Experimental profiles of the mean velocity confirm that the main recirculation region extends 
beyond one-half the distance between consecutive ribs. This is correctly predicted by LES, while 
k--E results show no backflow at section A. The experimental streamwise fluctuation profiles at 
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i 

Figure 27. Ribbed channel: cross-stream profiles of fluctuations at the two sections A and B, see Figure 2(b) 

section B exhibit a sharp peak just above the rib top, which is correctly predicted by LES but not 
by the k-e model. On both sections A and B, LES overpredicts slightly the turbulence levels in the 
bulk flow region. The disagreement between the two sets of experimental data as regards the 
fluctuation intensity near the smooth wall should also be noticed. 
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Figure 28. Ribbed channel: comparison of computed and experimental cross-stream profiles of mean and fluctuating 
.) Present streamwise velocity (values are normalized with respect to the average velocity over a rib, ua). t- 

predictions (LES h/H = 1/4.8, Reo=40000); (---) k--E predictions using the TUFC code$' (0) Experiments (Drain and 
Martin," h/H=1/5, Re=64000); (A) Experiments (Bates ef a/.:* h/H=1/5, Re=50000) 

5. CONCLUSIONS 

The main purpose of the present work was to demonstrate the feasibility of LES flow and heat 
transfer predictions for both simple and complex (recirculating) flows using a general-purpose 
code, a simple subgrid model and relatively coarse grids. This purpose was essentially reached; 40 
LETOT simulations required about 90 m for the plane channel flow (with 22 984 grid points) and 
130 m for the ribbed duct (33 800 points) on a CRAY-2 computer. Analysis of the behaviour of k +  
for this latter (Figure 3) shows that shorter simulations (10 LETOTs, requiring 30 m of CPU time) 
may be sufficient to get independence from initial conditions and acceptable statistics. 

For the simpler flow (smooth channel) several high-quality LES predictions are known. The 
present simulations suffer mainly from insufficient resolution of the computational domain, 
which results in overprediction of the average velocity, of the temperature drop, and of the streak 
spacing near the walls. Turbulence quantities, however, are predicted satisfactorily and coherent 
near-wall structures are qualitatively reproduced. 

For the more complex flow (periodic ribs) this study is one of the first presented so far. 
Statistically stationary conditions are reached after a few LETOTs. The mean flow rate is 
overpredicted as compared with experimental correlations and k--E simulations, and so are 
turbulence levels in the bulk flow region. However, the overall flow structure and many fine 
features of the mean and fluctuating flow field are in good qualitative agreement with existing 
experimental data. Certain flow features are correctly predicted by LES but absent from k--E, 
notably involving recirculation. It should be stressed that this is achieved by using a very simple 
model, containing only a few 'adjustable' constants (cs, A +  and, for heat transfer predictions, us). 

However, the main point at issue is not whether LES performs better than the k--E or similar 
closure models. The amount of information provided by a three-dimensional, time-dependent 
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simulation of a turbulent flow is incomparably larger than that given by any time-average-based 
turbulence model; under some circumstances, this may overcome the disadvantage of a less 
accurate prediction of some mean property of the flow, especially as far as the simulation is used 
as a tool to help understand the physical mechanisms involved. 

It is perhaps surprising that the overall quality of the predictions, for example, regarding the 
establishment of statistical equilibrium, is better for the more complex flow than for the simpler 
one. However, it should be observed that a turbulent flow within simple boundaries may be quite 
complex in its internal structure, while in a geometrically complex domain the flow characteristics 
are more heavily conditioned by the geometry* and may be relatively easier to predict (a 
well-known analogue in external flows is separation over sharp corners versus separation from 
a smooth surface). Moreover, for basic geometries such as a plane channel a large amount of 
experimental information is available and has been used throughout the years to ‘tune’ existing 
turbulence models. For more complex geometries, especially involving separation and reattach- 
ment, most existing models present some drawback and LES can be more competitive. 

Future work with LES will involve the investigation of alternative wall boundary conditions 
for high-Reynolds-number simulations; the testing of alternative differencing schemes; and the 
extension of the simulations to other geometries such as backward-facing steps and cross- 
corrugated heat transfer elements. 

The work reported here is part of a parallel research programme at City University involving 
both conventional turbulence modelling and LES, and corresponding experimental work. The 
latter includes holographic interferometry for heat transfer measurements, and was reported in 
some detail, for example, in Reference 71. The new method of holocinematographic velocimetry7’ 
has both three-dimensional and transient capabilities, and it is intended to commence work with 
this also. Finally, both with LES and experiment there is the consequence of entering the 
currently important field of coherent structure research.73 
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APPENDIX: NOMENCLATURE 

A +  
cs 
Cf friction coefficient 
CP 
D near-wall damping factor 
De hydraulic diameter 

constant in the near-wall damping law 
constants in the Smagorinsky subgrid model 

specific heat at constant pressure 

* Experimental evidence from our holographic interferometry tends to support this; the fringes were rather 
sharper with the roughness element geometry than the smooth wall, indicating that the former may partially ‘suppress’ the 
spanwise structures of the smooth wall. 
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H 
h 
k 
L 
LETOT 

Nu 
P 
P 
P* 
Pi 
4 
Re 
Red 
S" 
ST 

Sij 

M 

t 
T 
T* 
u, 0, w 
u, 
W 
x ,  Y ,  z 
X R  
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channel height 
rib height 
turbulent kinetic energy 
length of the computational domain 
Large Eddy Turn Over Time, 6/u, 
mass flow through the channel 
Nusselt number, q D e / [ l ( T w  - f')] 
static pressure 
modified pressure, p + ( 2 / 3 ) p l i  
periodic component of P 
rib pitch 
heat flux per unit surface 
Reynolds number, llDe/v (based on hydraulic diameter) 
Reynolds number, d 6 / v  (based on channel half-height) 
source term in the streamwise momentum equation 
source term in the temperature equation 
strain rate tensor, 4 (dui/axj + auj/axi) 
time 
temperature 
periodic component of T 
velocity components along x,  y ,  z 
friction velocity, ( I  z I/p)''' 
width of the computational domain 
co-ordinates 
reattachment length 

Greek letters 

c1 thermal diffusivity, 1/(pC,) 
as subgrid thermal diffusivity 
6 channel half-height, H / 2  
A 
Ax, Ay, Az dimensions of control volumes along x,  y ,  z 
At time step 
E 

1 thermal conductivity 
V kinematic viscosity 
v,  subgrid kinematic viscosity 
r 
P density 
(T Prandtl number, C,p v/A 
Gs subgrid Prandtl number 
7, local wall shear stress 
z 

average size of a computational cell 

dissipation of turbulent kinetic energy 

non-dimensional distance along ribbed wall 

mean wall shear stress, 6 d@/dx 

Superscripts and averages/jluctuations 

Q generic scalar (resolved component) 
Q' dimensionless value 
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Q0 initial/nominal value 
Q time average 
( Q )  
Q 
Q I’ 
Q h s  

space average over a plane or a span 
space average over the channel cross-section 
space fluctuation Q - (Q) 
root mean square value of Q”, ( Q ” 2 ) ” 2  
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